Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Sci Rep ; 13(1): 9038, 2023 06 03.
Article in English | MEDLINE | ID: covidwho-20235861

ABSTRACT

Oligonucleotide mapping via liquid chromatography with UV detection coupled to tandem mass spectrometry (LC-UV-MS/MS) was recently developed to support development of Comirnaty, the world's first commercial mRNA vaccine which immunizes against the SARS-CoV-2 virus. Analogous to peptide mapping of therapeutic protein modalities, oligonucleotide mapping described here provides direct primary structure characterization of mRNA, through enzymatic digestion, accurate mass determinations, and optimized collisionally-induced fragmentation. Sample preparation for oligonucleotide mapping is a rapid, one-pot, one-enzyme digestion. The digest is analyzed via LC-MS/MS with an extended gradient and resulting data analysis employs semi-automated software. In a single method, oligonucleotide mapping readouts include a highly reproducible and completely annotated UV chromatogram with 100% maximum sequence coverage, and a microheterogeneity assessment of 5' terminus capping and 3' terminus poly(A)-tail length. Oligonucleotide mapping was pivotal to ensure the quality, safety, and efficacy of mRNA vaccines by providing: confirmation of construct identity and primary structure and assessment of product comparability following manufacturing process changes. More broadly, this technique may be used to directly interrogate the primary structure of RNA molecules in general.


Subject(s)
COVID-19 , Tandem Mass Spectrometry , Humans , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , SARS-CoV-2/genetics , COVID-19 Vaccines , Oligonucleotides/genetics , COVID-19/prevention & control , mRNA Vaccines , Peptide Mapping/methods , RNA, Messenger/genetics
2.
ACS Infect Dis ; 6(12): 3269-3276, 2020 12 11.
Article in English | MEDLINE | ID: covidwho-933654

ABSTRACT

A high resolution mass spectrometry approach has been applied for the first time to detect and characterize SARS-CoV-2 coronavirus in cell cultured and nasopharyngeal swab specimens. Peptide ions for three of the most abundant structural viral proteins (membrane, nucleocapid, and spike) are detected and assigned directly, by virtue of the high resolution and mass accuracy within the mass maps of whole virus digests, without the need for tandem mass spectrometry (MS/MS). MALDI-MS based approaches offer high sample throughput and speed, compared with those of LC-MS strategies, and detection limits at some 105 copies, or orders of magnitude less with selected ion monitoring, that compete favorably with conventional reverse transcription polymerase chain reaction (RT-PCR) strategies. The detection of signature peptides unique to SARS-CoV-2 coronavirus over those from the influenza virus allows for its unambiguous detection.


Subject(s)
COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/chemistry , Peptide Mapping/methods , SARS-CoV-2/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Spike Glycoprotein, Coronavirus/chemistry , Viral Matrix Proteins/chemistry , COVID-19/virology , Humans , Phosphoproteins/chemistry , Proteolysis , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL